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which in turn may be written in the form 

[ 
d A(ufc?n) ;il’ 

;](UfC*)=O (2.4, 

Here c,,, is the effective velocity of the sound defined by (1.2), and in the case of a 
conductive liquid we have c = 1/m, U= = B (oh / Znpb,,)“‘. It will be seen from system 
(2.4) that magnitudes u & c, have constant values for points moving in the conductive 

liquid at velocities u f r,,,, i.e. for points the motions of which are defined by Eq. 
(lx 1 dl = 1‘ k Cm* while the related perturbations moving towards each other do not in- 
teract between themselves. 

Thus, system (2.4) coincides with the differential equations of the adiabatic flow of a 
perfect gas with the adiabatic exponent li = 3. This feature makes possible the direct 
application to this problem of all of the gas-dynamical results related to motions free 

of shock wave generation. 
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We consider the problem of stabilization of the steady motions of a nonlinear control 
system in the critical case of a pair of purely imaginary roots. We introduce a nonana- 
lytic control in two critical variables and use the Liapunov’s classical theory of stabi- 
lity of motion [l and 23 together with the methods developed in [3]. 

1. Let us consider the controlled system 
dX 
~=px+B”+g(X’84) (1.1) 

where z denotes the ( n + 2)-dimensional perturbation vector, u is the m-dimensional 
control vector which we shall assume to be unaffected by any disturbances, A and B 

are constant (n + 2) x (n + 2) and (n + 2) x m matrices, respectively, and g (x, u) 
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denote the terms of higher order of smallness in. z and U. 
If the unperturbed motion * =0 of the system (1.1) does not become asymptotically 

stable when IL G 0 , then we have a problem on stabilization, i.e. we require to find 
such a control I( t= I( (5)’ which would make, when inserted into (1. I), the unperturbed 
motion z = 0 asymptotically stable in the Liapunov sense, 

Let us now consider the critical case of a pair of purely imaginary roots [Z]. In this 

case J2 and 41 we can reduce the system (1. l), using a certain nondegenerate linear trans- 
formation of variables xi (i = i, 2, . . ., n + 2) , to 

Q -- 
cl1 - - i,r) + X (E, n, E, u), 

dq 
- =hS+ Y(5, r, t, r4) r/l (1.2) 

dz / dt = Aoz + I&u + a& + bq + Z (E, rl, 2, 4 (1.3) 
where E and 11 are scalar variables, z is an n-dimensional vector with components z*,, 
u and b are ~-dimensional constant vecrors, A@ and B, are n x n and n x m constant 
matrices, &denote the components of the vector function Z and X, Y and is, are 
analytic expressions defining the nonlinearities in E, II. z and u. 

The stabilization problem for (1.1) is equivalent to the same problem for the system 
(1.2) and (1.3). As we know 131, the system 

dz I dt = A,z + 3,tl (1.4 

is stabilizable and the following linear control can be constructed for it: 
ZP (z) = Pz (i-5) 

A constant m x n matrix P should be chosen so,,that, on substituting (1.5) into (1.4), 
all eigenvalues pS of the resulting matrix 

C = Aa + BP = const (C = (Q)) 

have negative real parts. 
Let us consider the following continuous, nonanalytic control proposed by Krasovskii 

[4] for the system (1.2) and (1.3) 

u 6 tl1 a) = pz + w (E, n) (co = (Wl, * . ., lum)) (I.61 

wj (E* ?I = wp (Es ?) + Wj@) (E, -J-J) + * - - + Wj(@) (5, 11) 

O-j& 

Wj(f)(E, q) = [r: 2 
%q-r 

(j) c* r)qp-r (is = 1, 2, . . . 0) 

t’=-1 p+q--r-k 

(1.7) 

(1.8) 

(P = I/r + !l? P >, 0, P > 0; ajn 2 0, .o > 0 - are all integers) 

Functions of the form (1.8) satisfy the estimate 

I Wj@f g, “11) 1 d /Ijk 115 ii” I II c II = -leT% Ajk = const > 0 

which is characteristic for homogeneous, !c_th order forms. 
Here and in the following, Expression wj (0, 0) when used in connection with a fuuc- 

tion of the type (1.3). will denote wj (0,O) = lim wj (5, n) = 0 
P-4 

Choice of the constants a$$_, and the integers w and aja depends on the form of the 
initial system (1.2) and (1.3) and on, .whether or not it can be stabilized. 

We shall show that, transforming to the noncritical variables z, according to 

‘S = y8 $ %8 (% Sq) (1.9) 

we can reach the state when the expansions of the right-hand sides of equations for the 
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noncritical variables will, when $ = 0, contain terms depending unly on the critical 
variables & and q of degree greater than N - I (N > 1 is an integer). 

We shall first define the functions %, (E, iI) as the formal solution of a system of equaw 

tians containing partial derivatives 

= A# + i&u -t- a4 + bq + Z (6, 7, x, U) 

where x’ is a n-dimensional vector with components x,. 
We shalI seek a solution of this system in the form of formal series 

z$f [& %I) = x 8 @I (ES rl) + x,@ (ES 9) -f + - l 

where the functions x,@) (& rj) arc of the type (1. EQ, i. e. 
%3tC 

(1.12) 

Inserting (1. Xl), (1.12) and (1,6)-(1.8) into (1.10) and comparing the v th order terms, 
S,e, termsforwhichp+g--= v in the left- and right-hand sides of the resulting 
equations, we obtain the following system of equation defining the vector function xi, 

Here T,@) denote the components of the vector function xtvf s which are also homoge- 
neous, *vth degree functions of 6 and ? of the type (1.Q When v ==. i e we have rr’j = 
= aE, + w + B#. When v > 3, then the functions ~~(‘1 depend on the functions x8 ‘61) R 
gp‘ ,**‘# qfv’lf (s =i, 2 ,..., n), and if x, (? where I < v are already computed, then the 
functions. %iV) I&, ‘1) will be completely defined. 

Let us now separate the terms appearing in the functions x,(‘) (6, q) and Tg(‘) (6, ?) 
which are accompanied by the factors Plr , and write them as 

(1.14) 
r= --I. I =-1 

where xf WV and rS “+% are the [u -j- r) *th order forms in 6: and +I , while a, > 0 
are integers. 

Inserting (1,14) into (L13f and assuming that 

we obtain 
&p+ N# %v 
- q & 

c ,X@+r)V 

rz-_1 i =I 
6~ i, 

P_’ + ,? rc(v+r)v or 
a I r’ (l.l(i~ 

r==--f r2-_1 
Constants key are chosen as follows. We put in (1.11) and (1.16) 

b 1v = b,, = . . . = b,, = max Ialvr czv,..., o,,,1 

and obtain the particular values for h,, by comparingSin the left- and right-hand sides 
of (1.16), the terms accompanied by the same factor p -r. In this manner we obtain for 
the vector function x(‘+~)~ p 
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The above system is a particular case of the system (32) of Cl], Section 30 (see also 

(3% 1) of P-J, Section 39). By Liapunov theorem [l and 21, the system (1.17) has a unique 

solution for X~cv+“lv , which can be obtained using the method of undetermined multipli- 

ers. This will also yield the linear algebraic systems for the coefficients a$_,(~ -I- ‘I - 

- r== ‘) of the form X, fvcr’*, which shall not be given here, 

Thus Eqs.(l. 17) make possible the cosecutive determination of the functions x~‘“‘~‘v 

(v ;= i,2....) and hence of the function x8(‘) pf Formula (1.12). 

Note 1.1. It can be shown that, if we put P = I/a&s + 811~ ( a and #3 are positive 
constan&) into the control (l.S)-(1.8), then we must have a = 0. 

Let us assume that the functions X, (.& 3) (1.11) are already computed, i.e. are known 
up to the (N - i)-th order 

v, (5, ?) = % (0 (E, sl) + %#@) (E, q) + . . . + X#+r) (fP rl) (1.18) 

Inserting (1.6)-( 1.8) into Eqs. (1.2) and (1.3) and transforming the result according 
to Formulas (1.9) and (1.18). we obtain 

dc 
X N 

-= 
dt, - All + TjJ -q$ (El Qtl) + FJ (5 3. Yh %=hE+x Y,(E, Q-t-a(4. q, Y) (i.f!)) 

0=2 a=a 

&ldt = CY + Z* (E, 9, II) (LZO) 

Here the functions tpi (5; Q, y) and the components of the vector function Z+ (5, r~, V) 
do not go below the second order of smallness in i, n and Y, . 

Functions ‘pi (i, 11, 0) satisfy the Lipschitz condition with an infinitesimal constant in 
the estimate 

(& > 0 are constants 
By virtue of the transformation (1.9) and (It, 18) the expansion of the components of 

2’ (8, q, 0) begins with the terms of the order not less than N. 
If these conditions hold. then the theorem 2.2 of [5] is valid, i.e. the problem of sta- 

bility of the null solution of the system (1.19), (1.20) is equivalent to the problem of 

stability of the null solution of r14 N N 

dt = - A? + 2 & (5, a), 
(1.21) 

$=G+ 2 ya(f* q) 
a==1 a=2 

We note that the system (1.21) can also be obtained by inserqng the control (1.6)- 
-(l. 8) into (1,2), replacing the components of the vector t in the resulting expression 
with the respective components of the vector x (1.18), re$ectively, and terminating 
the result on the Nth order terms. Clearly, increasing N will not alter those of the terms 
of (1.19) whose initial order was not greater than N. Therefore, when performing the 

computations, we should first put N = 2 and increase it only if necessary. 

9, Let us consider the homogeneous mth degree functions I&“‘) and .vfin) of the varia- 

bles $ and n , of the type (1.8) y 

rJffl) (r, tlf = 2 X cpe_r~P$r~-r (cpq+= const) $2.1) 
r=-1 p-+q-- 

Y 

t=n: p+q--r=m 

(y & 0, m > 0 are integers) 
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The problem which we shall now propose for the functions ,I&~) and ~(~1 will be ana- 

logous to the problem dealt with in @I. Let the function I&“*) be given. We require to 
find a function ~(~1 such, that its derivative with respect to time is. by virtue of the lin- 
ear part of the system (1.21), i.e. of Eqs. 

equal to I&~), 
dE / dt = - Aq, dq / dt = AE (2.3) 

The derivative of p-” with respect to time is, by (2.3). identically equal to zero (see 
(1.15) ). It follows therefore, that we can treat 9” as a parameter when differentiating 

~(“‘1 given by (2.2). Collecting all terms containing the factor pmr, we can write (2.1) 
and (2.2) as 

#), i #J$+‘lP:‘, u(m)= 
i 

Viy’)P-’ (2.4) 
r=-t t=-r - 

where u,, (m ~rl and ~_i(~“‘l are the forms of (m + r)l-th order in E and TV , and where 
m + r can be either even or odd, depending on ni and r. 

We shall seek the function v(m) (2.2) satisfying Eq. 

( 

a&) 
A c-&---‘1 

atAm1 
-) = n(m) + i 

af 
c_,(r* + #&n+r) P-r (2.5) 

r=-1 
where I&~) (2.1) is given and where G,, = 0 when m + r = 2k - i, (k = i, 2 ,... ). 

Constants G_, can be chosen so that (2.5) will have a solution. Indeed, putting (2.4) 
into (2.5) and comparing the terms on both sides of the resulting expression accompanied 
by the factor p-‘, we obtain the following equations defining the forms v_~(~+‘) 

(2.6) 

Arguments analogous to those in p] lead to the following formula for the computation 
of constants : an 

c+ = - & 
s 

u$?‘” (<. q) 

1 :zx : dee 
(m + r =2/c) (2.8) 

0 

8. We shall now investigate the stability of the reduced system (1.21). writing it as 

dE 1 dt = - h + x, 6 rl). + x, (Et rl) + ... 

(hl/ dt - 1 E + Y, 6 tl) + Y, 6 rl) + . . . (3.1) 

where XI and Yk represent the set of the k th order terms of the type (1.8). i. e. 
‘lli 

xi = 8 2 $,,&pllqP”, y, = 
r=-t p+q+==k 

_ -hp,&‘nqp-” (3.2) 
r==--1 p+q--r=k 

Here k > 2, et& > 0 and l ,k > 0 are integers. Coefficients l,,+r and I’p,r_r depend 
on the coefficients of the control (1.6)-( 1.8) ; they will not, however, be given in full 
since they are cumbersome. 

Let us consider the Liapunov function of the type 

p = r + 9’ + cpa (El 9) + PI (E, rl) + *.. (3.3) 

Here the symbol qk (E, rl) denotes the kth order in & and sl terms of the type (1.8). 
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We shall try to choose them so. that the total differential of V is, by virtue of (3.1). sign- 
definite, and we shall write this differential as 

dv / dt = ga (E, rl) + & (Es tl) + *a* (3.4) 

where w (Et q) denote the set of the k th order terms 

(3.5) 

aJL) (f. q) = 4 X&, + iqY,, + b+ a’Pi 
Xjaf +‘j-Ziii > (3.6) 

(k > 3, i > 3, i > 2) 

Clearly, if the functions s..., cpk-l-are known, so will be the function @trill (E, q) . 
We shall turn now to the third order terms in (3.4) 

gr(F;s q)=h ( acps ha 
t;-&--qq 

> + Qt3’ (f, 9) (3.7) 

a)$+” (f, n) p-’ 
r--l 

Here @_,(s+rl are the forms of the (3 + r)-th order in E and rl , while 6s = 

= mar [era, era], h’e shall choose the functions oa (E, Q) to satisfy 

Using (2.8) to compute G_@+‘) we obtain 
2x 

c(3+d ’ 
-r =z 

s 
@:7;;“’ (5, M Eao,,s 0 de (r = - l,.l, 3, . . . . . I%) (3.9) 

0 I 
rl==sln 9 

Putting now G(*) = XC_, (mtr) where m denotes the degree of the required homoge- 
neous function qa, (&, sl) , we obtain the following expression for dv I dt 

Wldt= ck(&a + q’) p + ..* 

where the terms of the order higher than third are omitted. 
In the sufficiently small neighborhood of -E = 0’ and ?l = 0 , the function V will be 

positive-definite and dl’ / dt will be sign definite when C(s) # 0 ,. Consequently, by the 
Liapunov theorem of asymptotic stability and by the first theorem on instability, the 
unperturbed motion of the system (3.1) will be asymptotically stable when, G(s) < 0 ,and 
unstable when G(:‘) > 0. By the reduction principle (theorem 2.2 of [SJ) the same asser- 
tion will be valid for the unperturbed motion of the initial system (1.2). (1.3). As the 
result, we have the following theorem. 

Theorem 3.1. Control (1.6)-( 1.8) stabilizes the system (3.1) and thus the system 
(1.2). (1.3). provided that the coefficients a$. can be chosen so, that, Gun < 0. If 
Gun > 0 for any value of dg& , then the system (3.1) cannot be stabilized by the con- 

trol (1.6)-(1.8). 
We note that when Cl”) + 0 , then only the first order terms ( p + Q - r = 1) in the 

control (1.6)-( 1.8) need to be taken into account, since gg (E, q) is influenced only by 
the coefficients accompanying these terms. 
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N o t e 3.1. With a nonanalytic control (1.6)-(1.8) given, we can, in general, choose 
a function qs ($ q), from the class of functions of the form (1.8) so, that the problem of 
the sign definiteness of dvl dt can be resolved by considering the set of terms of the 
lowest order, even if it is odd-numbered. 

If Grnt = 0 under the arbitrary choice of the coefficients c$_, , then the fourth order 

terms in (3.4) i. e.. g4 (6, ?j) should be considered and the above procedure used for 
Ba (Es S!, repeated. This will yield @) If Gt4) < 0, then the system (3.1) can be stabi- 
lized by the control (1.6)-( 1.8); if on the other hand d4) > 6, then stabilization is not 
possible. 

If G(4) = 0, we repeat the above procedure for the fifth order terms etc. If we now 

arrive in this manner at such m (nr 6 N) that Gtrn) # 0, then the problem on stabiliza- 
tion is solved as follows: if timI < 0 , the unperturbed motion is stabilized by the con- 

trol (1.6)-(1.8). if GCm) > 0 the stabilization is not possible. 
The author thanks V. V. Rumiantsev for helpful advice. 
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